Cleavage of the Silicon–Carbon Bond by a Phosphorus Fluoride: Methylene(bis)tetrafluorophosphorane

By Wolfgang Althoff, Manfred Fild, Hermann Koop, and Reinhard Schmutzler

(Lehrstuhl B für Anorganische Chemie der Technischen Universität, Pockelsstrasse 4, 33 Braunschweig, Germany)

Summary Methylene(bis)tetrafluorophosphorane has been prepared by cleavage of the Si-C bond of 1,1,3,3-tetramethyl-1,3-disilacyclobutane with phosphorus pentafluoride; it has been characterized by chemical means and by n.m.r. and mass spectroscopy.

THE cleavage reactions of element-trimethylsilyl linkages, $E-SiMe_3$ (E = N, P, O, S) with phosphorus pentafluoride and its derivatives, $R_n PF_{5-n}$ (n = 0-3; R = hydrocarbongroup) have been applied extensively to the synthesis of derivatives of PF_{5} with substituents containing these heteroatoms.¹ We now report the first case of cleavage of a silicon-carbon bond by a phosphorus fluoride, which gives rise to a novel type of tetrafluorophosphorane, methylene-(bis)tetrafluorophosphorane (3), in addition to (4), small

 $\begin{array}{c|c} & & & \\ \hline & & \\ CH_2 \longrightarrow SiMe_2 \end{array} + 2PF_5 \rightarrow P_4PCH_2PF_4 + FMe_2SiCH_2CH_2SiMe_2F \\ (1) & (2) & (3) & (4) \end{array}$

amounts of Me₂SiF₂ were also observed. The fluorosilane (4) is known,² and has been characterized by chemical analysis and ¹H n.m.r. spectroscopy.

The bis-tetrafluorophosphorane (3) is a volatile, highly reactive liquid, b.p. ca. 68 °C (estimated from its vapour pressure curve), and it was characterized by n.m.r. spectroscopy. From ¹⁹F and ³¹P n.m.r. spectra between +30 and -100 °C it is evident that fast positional exchange of ligands at phosphorus occurs throughout the temperature range accessible. Such exchange is typical of PF_5 and many of its substitution products.1

The ¹H n.m.r. spectrum shows a 1:2:1 triplet; each component of the triplet is split into 9 lines (equal coupling between ¹H and 8 ¹⁹F nuclei of the two PF₄ groups); δ_{H} + 3.27 (int. Me₄Si); ${}^{2}J_{PH}$ 25.9Hz; ${}^{3}J_{HF}$ 6 Hz. The ${}^{19}F$ n.m.r. spectrum is a second-order spectrum of type $X_4AA'X'_4$ with $\delta_{\mathbf{F}} - 40.2$ p.p.m. (int. CCl₃F) separation of the main peaks $|^{1}J_{\mathbf{FF}} + {}^{3}J_{\mathbf{FF}}|$ 965.3 Hz. The ³¹P n.m.r. spectrum shows -22.6 p.p.m. (ext. H_3PO_4).

The mass spectrum of (3) exhibited a minor parent peak at m/e 228 [CH₂(PF₄)₂⁺] of relative intensity 0.4; the strongest fragment was PF_4^+ at m/e 107, as for other alkyltetrafluorophosphoranes.5

Two carbon-phosphorus bonds were formed in (3) during the cleavage reaction of (1) with (2); stepwise hydrolysis of (3) gave rise to the bis-phosphonic diffuoride (5) and

methylene (bis)phosphonic acid, respectively. Compound

$$\begin{array}{c} \operatorname{CH}_2(\operatorname{PF}_4)_2 \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{CH}_2[\operatorname{P}(:\operatorname{O})\operatorname{F}_2]_2 \xrightarrow{\operatorname{H}_2\operatorname{O}} \\ (3) & (5) \\ \operatorname{CH}_2[\operatorname{P}(:\operatorname{O})(\operatorname{OH})_2]_2 \end{array} \\ (6) \end{array}$$

(5) was identified by its ¹⁹F n.m.r. spectrum which was identical to that of the authentic compound, synthesized by an independent route³ [$\delta_{\rm F}$ - 58.5 p.p.m. (int. CCl₃F); $J_{\rm PF}$

1130 Hz]. The bisphosphonic acid (6) is also known.⁴ We identified our hydrolysis product as (6) by ³¹P n.m.r. spectroscopy; J_{PH} 20 Hz; δ_P + 17.6 p.p.m. (from ext. H₃PO₄); lit.^{4b} + 17.8 p.p.m.

We thank Professor G. Greber and Dr. W. R. Bamford (I.C.I.) for samples of the disilacyclobutane. W. A. and H.K. acknowledge support through Verband der Chemischen Industrie and Deutsche Forschungsgemeinschaft.

(Received, 27th January 1975; Com. 094.)

¹ See, for example: R. Schmutzler, in 'Halogen Chemistry,' Vol. 2, ed. V. Gutmann, Academic Press, London and New York, 1967,

² See, for example: R. Schnutzler, in Flatogen Chemistry, Vol. 2, ed. V. Gutmann, Academic Fless, London and New York, 1907, pp. 31 ff.
² M. Kumada, K. Nakata, and Y. Yamamoto, Bull. Chem. Soc. Japan, 1964, 37, 871.
³ W. Althoff and M. Fild, Z. Naturforsch., 1973, 28b, 98.
⁴ (a) G. Schwarzenbach and J. Zurc, Monatsh. Chem., 1950, 81, 202; (b) R. J. Grabenstetter, O. T. Quimby, and T. J. Flautt, J. Phys. Chem., 1967, 71, 4194.
⁵ T. A. Blazer, R. Schmutzler, and I. K. Gregor, Z. Naturforsch., 1969, 24b, 1081.